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Asperosaponin VI (AS6), as the quality marker of Dipsaci Radix, is veri�ed to exert therapeutic e�ect on alleviating recurrent
spontaneous abortion (RSA). However, due to the lack of relevant research, its molecular mechanism is still unclear. We retrieved
targets for AS6 and RSA, and then used their overlapped targets for PPI analysis. In addition, we used GO and KEGG enrichment
analyses, andmolecular docking to investigate the anti-RSAmechanisms of AS6. Furthermore, we conducted in vitro experiments
to validate the predictions of network pharmacology. Results showed that a total of 103 AS6-associated targets and 2084 RSA-
associated targets, with 49 targets overlapped. GO enrichment analysis showed 845 signi�cant biological processes like
decidualization, while KEGG pathway enrichment analysis revealed 76 signi�cant entries including 18 signaling pathways, which
were closely linked to PI3K-Akt, HIF-1, TNF, IL-17, and VEGF signaling pathways, etc. Molecular docking �ndings veri�ed that
AS6 had tight link with the key targets including JUN, CASP3, STAT3, SRC, and PTGS2. Notably, in vitro experiments revealed
that AS6 treatment could exert lower expressions of JUN, pro-CASP3, CASP3, STAT3, SRC, and PTGS2 in decidual cells
compared with progesterone despite the expressions of STAT3, SRC, and PTGS2 with no signi�cant di�erence, and mifepristone
could interfere with the e�ects. In general, numerous targets and multiple pathways involve during the process of AS6 treatment
against RSA. Moreover, our in vitro research �rst reported that AS6 may regulate the expressions of key targets (JUN, CASP3,
STAT3, SRC, and PTGS2) in decidual cells to promote decidualization, thus treating RSA.

1. Introduction

Recurrent spontaneous abortion (RSA) is a common re-
productive endocrine disorder, which refers to consecutive
spontaneous abortions happening twice or more before
20weeks of gestation [1, 2]. According to statistics, over 5%
of women at reproductive age su�er from RSA [3]. Multiple
pathological factors lead to RSA, including genetic factors,
anatomical abnormalities, endocrine disorders, infectious
diseases, and thyroid dysfunction [4, 5]. Embryonic chro-
mosomal abnormality is the main cause of spontaneous

abortion in early pregnancy, which results in over 50% of
�rst trimester miscarriages [6–8]. However, there exist ap-
proximately 50% of RSA cases with unexplained recurrent
spontaneous abortion [9]. RSA seriously poses threat to the
life and health of pregnant women, increasing the burden on
families and society. In recent years, the therapeutic e�ects of
traditional Chinese medicine (TCM) on RSA have gradually
been proven, attracting the attention of more and more
scholars [10–12].

Shoutai pill has been often used for treating unexplained
recurrent spontaneous abortion in China [10]. It has been
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revealed that Shoutai pill can maintain the balance of 01/
02 cytokines, which improves endometrial receptivity and
embryo implantation thus exerting therapeutic effects on
RSA [13]. To date, the hot spots of current researches focus
on the active ingredients of Shoutai pill. Asperosaponin VI
(AS6, Pubchem CID: 118705380) is the quality marker of
Dipsaci Radix, which is an important drug in Shoutai pill.
Pharmacological studies in recent decades have shown that
Dipsaci Radix has a variety of biological activities, including
antiuterine contraction, antiinflammatory, antiaging, anti-
arthritic, antiosteoporosis, fracture healing, neuro-
protection, and it has been verified to benefit Chinese
women from miscarriages, serving as the preferred herb in
clinical treatment [14]. According to Chinese Pharmaco-
poeia 2020 edition, Dipsaci Radix exerts effects on tocolysis
and uterine bleeding during pregnancy, which has been an
accumulated experience for thousands of years [15]. To date,
the active components isolated from Dipsaci Radix mainly
include saponins, triterpenes, volatile oils, and alkaloids,
which may have curative effects on female reproductive
disorders through significantly suppressing the spontaneous
contractions of the gestational uterus induced by oxidative
toxins [16]. Existing evidence suggests thatDipsaci Radix has
an important application in anti-RSA treatment [15].
Moreover, we have investigated the action mechanism of
Dipsaci Radix extracts and AS6 in our previous research and
have observed that theymay exert therapeutic effects on RSA
by activating decidual cells’ progesterone receptor expres-
sion through Notch signaling pathway [17]. 0e angio-
genesis disorders of the endometrium and infection play
important part in RSA, and existing evidence has shown that
AS6 efficiently accelerates the angiogenesis of regenerated
tissue and facilitates wound healing in vivo, and improves
vascularization of human umbilical vein endothelial cells
(HUVECs) in vitro by the upregulation of HIF-1α/VEGF
pathway [18]. Moreover, it has been revealed that AS6 also
inhibits the morphological expansion of microglia cells,
decreases the expression, and releases of proinflammatory
cytokines, such as IL-1B, iNOS, IL-6, and TNF-a in a dose-
dependent manner [19]. However, whether AS6 can treat
RSA through these pathways needs further research.

In the present study, we carried out bioinformatics
analysis integrated with experimental validation so as to
perform systematic analysis on various targets and pathways
of AS6 for treating RSA.

2. Methods

We have referred to the methods of Ren et al. [20]. Figure 1
described the study flowchart.

2.1. Data Retrieval of Network Pharmacology

2.1.1. Retrieval of AS6-Associated Structure and Targets.
First, we retrieved the information of AS6-associated
structure and targets by searching TCMSP platform (https://
tcmsp-e.com/) [21]. Second, Pubchem website (https://
pubchem.ncbi.nlm.nih.gov/) was used to obtain the AS6
structure stored as “SDF” file that we subsequently uploaded

into SwissTargetPrediction platform (https://new.
swisstargetprediction.ch/) [22] to get the targets associated
with AS6. 0ird, we used the UniProt platform (https://
www.uniprot.org/uniprot/) to standardize the AS6-associ-
ated target information restricted to humans.

2.1.2. Retrieval of RSA-Associated Genes and �eir Corre-
sponding Proteins. Taking “Recurrent Spontaneous Abor-
tion” as the key word, we searched GeneCards (https://www.
genecards.org/) [23] and Online Mendelian Inheritance in
Man (OMIM, https://omim.org/) [24], respectively.0en we
carried out data standardization through Uniprot database
to obtain corresponding proteins of RSA-associated genes.

2.1.3. Overlapped Target Proteins (OTPs). We utilized R
(v3.6.1) software to take the intersection of AS6- and RSA-
associated targets to obtain OTPs.

2.2. Data Analysis of Network Pharmacology

2.2.1. OTPs-Associated Protein Interaction Analysis. We
obtained OTPs-associated Protein–Protein Interaction
(PPI) data via retrieving the STRING platform (https://
string-db.org/) [25]. Next, we plotted the PPI network
with the PPI information of OTPs imported into Cytoscape
software (v3.7.2; https://www.cytoscape.org/) [26] and car-
ried out network topology analysis for the calculation of the
target degrees. We screened the core targets with degrees
above average. Afterwards, we constructed an AS6-OTPs-
RSA network via Cytoscape.

2.2.2. GO Enrichment Analysis and KEGG Pathway Analysis.
We performed Gene Ontology (GO) enrichment analysis
concerning biological process (BP) via clusterProfiler
package (R3.6.1) and selected the enrichment results with
p< 0.05. 0en the top 20 items and 20 representative items
closely related to the pathological process of RSA were
presented. Additionally, we input OTPs into Cytoscape for
GO.BP enrichment analysis with p-value set to 0.001, and
performed network visualization to establish linkages be-
tween biological processes and targets. Next, we carried out
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis of OTPs using clusterProfiler package (R3.6.1),
extracted the significant enrichment results (p< 0.05), and
plotted pathway-target network using Cytoscape.

2.3. Molecular Docking between Key Targets and AS6. We
selected the top five proteins in terms of degree formolecular
docking, which were recognized as the key targets in the
treatment of AS6 for RSA. We adopted AutoDock Vina
software (v1.1.2) [27] to perform molecular docking sim-
ulations to investigate interaction activities between AS6 and
key targets. 0e 3D structure of AS6 was obtained by re-
trieving the Pubchem platform (https://pubchem.ncbi.nlm.
nih.gov/). AutoDock Tools (v1.5.6) was utilized to distribute
charge and combine nonpolar hydrogen for AS6 and convert
the results into a PDBQT file. We searched RCSB PDB
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website (https://www.rcsb.org/) for the crystal structures of
key targets. �en the target protein was separated from its
ligand, distributed charge, and added polar hydrogen via
AutoDock Tools, which would be subsequently stored as a
PDBQT �le. We used AutoDock Tools to determine the size

and center of the docking box. Afterwards, we performed
molecular docking simulations among AS6 and the target
proteins with every a¯nity calculated.�en we analyzed and
plotted the docking results of AS6 via PyMol and Discovery
Studio.
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Figure 1: �e °ow chart of this study.
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2.4. Validation of AS6 by in Vitro Assays

2.4.1. Cells, Reagents, and Antibodies. We obtained primary
decidua cells from decidua tissues. 0e source of Asper-
osaponin VI was purchased from Guangdong Food and
Drug Administration, China. We purchased progesterone
and mifepristone from Sigma Aldrich. We bought 0.25%
trypsin, DMEM/F12, FBS, Charcoal dextran-treated FBS,
and Lipofectamine™ 2000 from Gibco. 0e antibodies used
in this research, such as C-JUN (AF1612), CASP3 (AC030),
STAT3 (AF1492), SRC (AF1831), PTGS2 (AF1924), and
GAPDH (AF1186) antibodies were purchased from Beyo-
time (Shanghai, China). We diluted the primary antibody at
a ratio of 1 :1000 with QuickBlock™ Primary Antibody
Dilution Buffer for Western Blotting (Beyotime) and the
secondary antibody at a ratio of 1 :10000 with QuickBlock™
Secondary Antibody Dilution Buffer for Western Blotting
(Beyotime).

2.4.2. Isolation and Culture of Primary Decidual Cells.
We obtained decidua samples at 6–9 week of gestation from
singleton pregnant women who requested normal preg-
nancy termination or who underwent excretion of retained
pregnancy products after a failed spontaneous pregnancy.
All patients signed written informed consent in accordance
with Declaration of Helsinki, and permission was obtained
from Ethics Committee of the 1st Affiliated Hospital of
Guangzhou University of TCM. 0e ethics code is No.K
[2019] 098.

Fresh decidua tissues were taken aseptically, washed in
PBS to remove blood, cut into pieces, digested with trypsin-

EDTA (0.25%) for 5–10min, and digestion was stopped by
adding DMEM/F12 medium containing 10% FBS. 0e cell
clusters in the final digestion were extracted with a 23-gauge
needle, filtered through a 200-mesh sieve, centrifuged at
2000 rpm for 5min, resuspended in DMEM/F12 medium
containing 10% FBS, and incubated in flask at 5×105 cells/
ml. After 30min, we removed nonadherent cells and
replaced the medium after 48 h.

2.4.3. Cell Counting Kit 8 Assay. We treated the decidual
cells with a concentration gradient of progesterone (P),
mifepristone (M), and AS6 for 12, 24, and 48 h. According to
the manufacturer’s protocol, we performed a cell counting
kit 8 (CCK-8) assay to detect cell proliferation abilities using
an optical density (OD) setting of 450 nm in the microplate
reader (Varioskan Flash;0ermo Fisher Scientific,Waltham,
MA, USA).

2.4.4. Western Blotting. We cultured decidual cells in 6-well
plates and treated them with the specific concentration of
progesterone, Asperosaponin VI with or without mife-
pristone according to CCK-8 screening results. After the
treatment, the protein was extracted by adding 200 μL RIPA
lysis buffer prepared with phosphatase inhibitor and pro-
tease inhibitor per dish (Beyotime). 0e protein bands were
transferred to polyvinylidene fluoride membranes (Shang-
hai, microtiter wells) by electrophoresis and wet transfer
steps, closed with QuickBlock™ Western closing solution
(Beyotime) at room temperature for 30min, added primary
antibody and incubated overnight at 4°C in a shaker, then

Table 1: Potential target genes of AS6 in the treatment of RSA.

Number Gene Number Gene
1 BCL2L1 26 PTPRC
2 F2 27 F3
3 RORC 28 F7
4 STAT3 29 LNPEP
5 GLRA2 30 CTSB
6 TYMS 31 CASP3
7 ADORA1 32 REN
8 TOP1 33 CASP7
9 PTGS2 34 CASP1
10 F2RL1 35 CAPN1
11 GBA 36 GRB2
12 JUN 37 PRKCA
13 VDR 38 ACE
14 ADRA2B 39 ITGAV
15 DRD2 40 HLA-A
16 CYP2D6 41 MMP3
17 HTR1B 42 MMP10
18 RRM1 43 SIRT1
19 ADRB1 44 MMP8
20 NR3C1 45 APEX1
21 SRC 46 HDAC6
22 XIAP 47 IGF1R
23 PLG 48 ITGA4
24 ITGB1 49 ITGB3
25 NOS2
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added the corresponding secondary antibody and incubated
in shaker at 24°C for 1.5 h. 0e antibody reactivity level was
subsequently detected by gel imaging system (Bio-Rad).
Finally, the grayscale values were quantitated using ImageJ
software.

2.4.5. Statistical Analysis. All results were expressed as
mean± standard deviation. Student’s t-tests were used to
compare two separate samples. One-way ANOVA was used
for comparison of univariate samples between multiple
groups. p-value <0.05 indicates statistical significance.

3. Results

3.1. AS6-Associated Structure and Target Proteins. We ob-
tained a total of 103 AS6-associated targets. After data
standardization by the UniProt database, we obtained AS6-
related target proteins called as Gene symbols. AS6-asso-
ciated structure and target results were shown in supple-
mentary Tables S1–S2.

3.2. RSA-Associated Target Information and Overlapped
Target Proteins (OTPs). A total of 2084 RSA-associated
target proteins were retrieved. We took the overlap of AS6-
and RSA-associated targets as OTPs, which included 49
overlapped targets, as shown in Table 1 and Figure 2(a).

3.3. Construction of PPI Network and Screening Core Target
Proteins. OTPs were imported into the STRING platform
with the targets having no link to others hidden. We im-
ported the PPI data into Cytoscape to draw PPI network in
Figure 2(b). 0ere were 21 target proteins predicted to be the
core target proteins (Table 2), whose degrees were above
average degree (9.83).

3.4. AS6-OTPs-RSA Network Plotting. Figure 2(c) shows
AS6-OTPs-RSA network with 51 nodes and 98 edges in-
cluded. In Figure 2(c), the orange circular nodes stand for
the overlapped target proteins (OTPs). 0e red rectangle
node stands for “Asperosaponin VI.” 0e pink rectangle
node stands for “Recurrent Spontaneous Abortion.” 0e
edges stand for the interactive relationships between
Asperosaponin VI, recurrent spontaneous abortion, and the
overlapped targets.

3.5. GOEnrichmentAnalysis. We got 845 items of biological
process (BP). 0e top 20 items were shown in Figure 3(a).
Noteworthily, we have filtrated 20 items mainly linked to
autophagy, blood vessel endothelial cell migration, angio-
genesis, inflammatory response, oxidative stress, decidual-
ization, endocrine process, and immune response, which
were demonstrated in Figure 3(b). Additionally, we input 49
OTPs into Cytoscape for GO.BP enrichment analysis with
p-value set to 0.001. Figure 3(c) illustrated the enrichment
results mainly involved in four aspects as follows: (i) in-
flammation-related activities, such as regulation of neuro-
inflammatory response and extracellular matrix disassembly

which is closely associated with oxidative stress; (ii) cell
cycle, such as positive regulation of endothelial cell prolif-
eration and migration; (iii) tissue repair, such as positive
regulation of response to wounding and wound healing and
regulation of tissue remodeling; and (iv) endocrine meta-
bolism process, such as regulation of cofactor metabolic
process, adrenergic receptor activity, and negative regulation
of synaptic transmission.

3.6. KEGG Pathway Analysis. We finally got totally 76 items
including 18 key signaling pathways listed in Table 3. 0ese
signaling pathways such as PI3K-Akt, HIF-1, TNF, IL-17,
and VEGF may exert regulatory functions on the process of
AS6 against RSA. We conducted network visualization via
Cytoscape as plotted in Figure 3(d), which established the
relationship between signaling pathways and targets. Spe-
cifically, several OTPs were involved in PI3K-Akt signaling
pathway (e.g., BCL2L1, ITGB1, GRB2, PRKCA, ITGAV,
IGF1R, ITGA4, ITGB3), HIF-1 signaling pathway (e.g.,
STAT3, NOS2, PRKCA, and IGF1R), TNF signaling path-
way (e.g., PTGS2, JUN, CASP3, CASP7, and MMP3), IL-17
signaling pathway (e.g., PTGS2, JUN, CASP3, and MMP3),
and VEGF signaling pathway (e.g., PTGS2, SRC, PRKCA).

3.7. Molecular Docking Analysis. Among 21 core targets, the
top five target proteins in terms of degree were chosen for
molecular docking, including JUN, CASP3, STAT3, SRC,
and PTGS2, respectively, which were considered as the key
targets in the process of AS6 treating RSA. To verify howAS6
binds to the key targets, we adoptedmolecular docking using
Autodock Vina to predict their docking interactions. Table 4
showed the docking results including affinity and interaction
information.

Based on Figure 4(a), AS6 combined with JUN by
forming six hydrogen bonds with the residues including
Gln-30, Arg-5, Arg-21, Asp-26, and Lys-22 (binding affinity:
−7.2 kcal/mol). Besides, there were three van der Waals
interactions between AS6 and Tyr-18, Lys-9, and Leu-13.

Based on Figure 4(b), the docking affinity of AS6 on SRC
was −9.3 kcal/mol. 0e residues containing Glu-339, His-
319, Gln-253, Lys-152, Phe-150, Tyr-90, 0r-247, and Ser-
248 linked to AS6 by forming nine hydrogen bonds, which
provided a powerful electrostatic force for the combination
of AS6 and SRC. Moreover, there were five van der Waals
interactions between AS6 and Gln-251, Leu-322, Lys-401,
Pro-250, and Ile-153.

Based on Figure 4(c), the docking affinity of AS6 on
CASP3 was −9.7 kcal/mol. 0ere existed six hydrogen bonds
provided by the Arg-164, Cys-264, and Glu-124 residues in
the link to AS6. Moreover, AS6 binded with the Gly-125,
0r-140, Gly-202, Tyr-197, and Glu-124 residues by six van
der Waals.

Based on Figure 4(d), the docking affinity of AS6 on
STAT3 was −7.6 kcal/mol. 0ere were five hydrogen bonds
provided by the Glu-324, Ser-513, Gln-247, and Cys-251
residues in the interaction with AS6. What is more, there
were five van der Waals interactions between AS6 and Trp-
510, Pro-336, Lys-348, Gln-326, and Trp-243.
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Based on Figure 4(e), the docking a¯nity of AS6 on
PTGS2 was −10.5 kcal/mol. �e Glu-236, Ser-143, and Glu-
140 residues formed three hydrogen bonds in the interaction
with AS6. Additionally, there were �ve van der Waals in-
teractions between AS6 and Ser-143, Arg-333, Asn-144, Ser-
146, and Gly-225.

3.8.CCK-8Assay. We performed CCK-8 assays before the in
vitro research. �e concentrations of progesterone used in
the study were 0 (control group), 5, 10, and 20 μmol/L. �e
results revealed that the progesterone concentration at
20 μmol/L exerted proliferative e�ect on the proliferation of
decidual cells, which was selected for subsequent experi-
ments (Figure 5(a)). �e concentrations of mifepristone
used in the study were 0 (control group), 10, 20, 30, 40, and
50 μmol/L. �e results revealed that the mifepristone con-
centration at 50 μmol/L exerted suppressive e�ect on the
proliferation of decidual cells, which was selected for sub-
sequent experiments (Figure 5(b)). �e concentrations of
AS6 used in the study were 0 (control group), 5, 10, and
20 μg/mL.�e results revealed that there was no cytotoxicity
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Figure 2: Venn diagram of OTPs (a), PPI network of OTPs (b), and AS6-OTPs-RSA network (c).

Table 2: Core targets of AS6 in the treatment of RSA.

Number Core Targets Degree
1 JUN 28
2 CASP3 26
3 STAT3 24
4 SRC 24
5 PTGS2 21
6 SIRT1 18
7 REN 17
8 PTPRC 17
9 ITGB1 16
10 BCL2L1 16
11 ACE 15
12 PLG 15
13 MMP3 13
14 IGF1R 13
15 PRKCA 12
16 CTSB 11
17 XIAP 11
18 ITGB3 11
19 F2 10
20 NR3C1 10
21 CASP1 10
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to decidual cells when the AS6 concentration was no higher
than 10 μg/mL with the proliferation of decidual cells neither
promoted nor inhibited, which was selected for subsequent
experiments (Figure 5(c)).

3.9.Western BlottingAnalysis. To investigate the function of
Asperosaponin VI in decidual cells, we tested the expression
levels of speci�c proteins including JUN, CASP3, pro-
CASP3, STAT3, SRC, and PTGS2 to examine the in°uence
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of Asperosaponin VI treatment via Western blotting. 0e
treatment concentrations of progesterone, mifepristone, and
Asperosaponin VI were 20 μmol/L, 50 μmol/L, and 10 μg/mL
respectively, according to CCK-8 assay. As shown in
Figures 5(d)–5(e), Asperosaponin VI treatment could exert
lower expressions of JUN, pro-CASP3, CASP3, STAT3, SRC,
and PTGS2 in decidual cells compared with progesterone,
while the expressions of STAT3, SRC, and PTGS2 showed no
significant difference between Asperosaponin VI-treated
and progesterone-treated groups, and mifepristone could
interfere the effects.

4. Discussion

Chinese traditional medicine Dipsaci Radix, a drug in
Shoutai pills, has been widely applied in treating gyneco-
logical diseases like RSA clinically for many years. Our
present study explored the mechanisms of Asperosaponin
VI in treating RSA, which is an important component of
Dipsaci Radix.

Progesterone (P) exerts essential effects on the main-
tenance of pregnancy, the declining level of which in blood
in early pregnancy leads to necrosis of the decidua, thereby
causing miscarriage [28]. Mifepristone (M) is the first-

known progesterone antagonist, which eventually results in
conception abortion when used postimplantation [29]. In
this study, we reported the strong progesterone-like effects
of Asperosaponin VI and its actions in the treatment of RSA.

According to PPI network topology analysis of OTPs, we
noticed that these targets were characteristics of decidual-
ization, autophagy, angiogenesis, oxidative stress, inflam-
mation, and endocrine-related proteins. We identified five
key targets including JUN, CASP3, STAT3, SRC, and
PTGS2, which are in close conjunction with AS6 according
to molecular docking findings, indicating that they may be
the key targets of AS6 in treating RSA.

JUN (Transcription factor AP-1 subunit Jun), which is
the mediator of trophoblast invasion, plays a critical role in
decidualization [30, 31]. It has been revealed that down-
regulation of JUN production could alter epithelial mes-
enchymal transition (EMT)-related molecule expression,
which would impede trophoblast migration and invasion
[32]. Existing research has confirmed that activation of JUN
expression involves the chemokine recruitment of human
first trimester decidual cells (FTDCs), triggering response to
proinflammatory stimuli, which serves as an essential factor
for RSA [33]. Further study has clarified that the accumu-
lation of CX3CL1 chemokine results from the induction of

Table 3: KEGG pathway enrichment analysis.

ID Signaling Pathway Enriched Gene Number p-value
hsa04933 AGE-RAGE signaling pathway 5 0.000238979
hsa04668 TNF signaling pathway 5 0.000404789
hsa04151 PI3K-akt signaling pathway 8 0.000751101
hsa04926 Relaxin signaling pathway 5 0.000772967
hsa04015 Rap1 signaling pathway 6 0.001119119
hsa04012 ErbB signaling pathway 4 0.001321844
hsa04912 GnRH signaling pathway 4 0.001844088
hsa04657 IL-17 signaling pathway 4 0.001918105
hsa04625 C-type lectin receptor signaling pathway 4 0.002775155
hsa04066 HIF-1 signaling pathway 4 0.003289067
hsa04621 NOD-like receptor signaling pathway 5 0.003705682
hsa04370 VEGF signaling pathway 3 0.004472814
hsa04919 0yroid hormone signaling pathway 4 0.0047801
hsa04068 FoxO signaling pathway 4 0.006326533
hsa04917 Prolactin signaling pathway 3 0.007211213
hsa04024 cAMP signaling pathway 5 0.007706803
hsa04921 Oxytocin signaling pathway 4 0.011068984
hsa05022 Pathways of neurodegeneration 7 0.016957114

Table 4: Molecular interactions of key targets with AS6.

Compound Target PDB
ID Affinity (kcal/mol) Number of hydrogen

bonds Hydrogen bonds interacting residues

Asperosaponin
VI JUN 5FV8 −7.2 6 Gln-30 (2), Arg-5, Arg-21, Asp-26, Lys-22

Asperosaponin
VI CASP3 3DEI −9.7 6 Arg-164 (4), Cys-264, Glu-124

Asperosaponin
VI STAT3 6NUQ −7.6 5 Glu-324 (2), Ser-513, Gln-247, Cys-251

Asperosaponin
VI SRC 2SRC −9.3 9 Glu-339 (2), His-319, Gln-253, Lys-152, Phe-150, Tyr-

90, 0r-247, Ser-248
Asperosaponin
VI PTGS2 5F19 −10.5 3 Glu-236, Ser-143, Glu-140
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Figure 4: Continued.
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IL-1β, TNF-α, and IFN-c in FTDCs, which can be mediated
by the activation of JUN-related signaling [34]. Notably, our
experiments displayed lower expression level of JUN in
decidual cells in AS6-treated group compared with pro-
gesterone-treated group, suggesting that AS6 could suppress
the expression of JUN in decidual cells to promote
decidualization so as to anti RSA.

Caspase-3 (CASP3) is an apoptosis-related gene, whose
expression has close correlation with placental separation
[35]. Some studies have identi�ed myometrial CASP3 as a
potential regulator of uterine quiescence, and uterine en-
doplasmic reticulum stress-unfolded protein response reg-
ulation of gestational length is CASP3-dependent [36].
Decidual cell apoptosis could be mediated by TNF-related
apoptosis-induced ligand (TRAIL) via CASP3-dependent
pathway, whose expression is upregulated in decidua from
women su�ering from RSA [37]. Moreover, the inhibition of
CASP3 activity could prevent the apoptosis of uterine
stromal cells, which could proliferate and then di�erentiate
into decidual cells during the process of decidualization [38].

CASP3 exerts an essential role during the process of
decidualization, while the increased expression of CASP3 in
endometrium decidua indicates poor endometrial recep-
tivity, which could lead to RSA [39]. Notably, our experi-
ments revealed that AS6 treatment could exert lower
expressions of pro-CASP3 and CASP3 in decidual cells
compared with progesterone, suggesting that AS6 could
downregulate CASP3 expression in decidual cells to pro-
mote decidualization so as to anti RSA.

Signal transducer and activator of transcription 3
(STAT3) phosphorylation has a close relationship with
embryo implantation and decidualization [40]. RSA results
from impaired trophoblast function, and further study has
shown that STAT3 expression could a�ect trophoblast cell
proliferation and migration [41]. Existing studies have
con�rmed that the reduction of plasmacytoid dendritic cells
in RSA could be mediated by the regulation of STAT3
expression [42]. STAT3 signaling has been veri�ed to exert
anti-in°ammatory IL-10 expression in decidua cells to
protect pregnancy [43]. SRC (Proto-oncogene tyrosine-
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Figure 4: Simulated molecular docking of Asperosaponin VI on JUN (a), SRC (b), CASP3 (c), STAT3 (d), and PTGS2 (e).
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Figure 5: Asperosaponin VI influenced key targets’ expression in decidual cells. Decidual cells were treated with progesterone (P), or
Asperosaponin VI (AS6) respectively, with or without mifepristone (M) for 24 h inWestern blotting. (a, b, c) CCK-8 assays of (P) M and AS6 (d)
0e protein expressions of key targets including JUN, CASP3, STAT3, SRC and PTGS2 were detected byWestern blotting. (e) Representation of
the relative grey level in (D) Data are displayed as mean± standard deviation. ∗∗p< 0.01; ∗∗∗p< 0.001; ∗∗∗∗p< 0.0001.
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protein kinase Src) is endometrial nuclear receptor cofactor,
which plays an important part in regulating human endo-
metrium remodeling [44]. It has been shown that SRC could
regulate endometrial function and progesterone-related
gene expression [45]. Transcriptomics has confirmed that
SRC gets involved in the process of decidualization [46].
Further study has shown that the expression of SRC is
necessary for invasion and migration of human decidual
stromal cells, which exerts vital functions in embryo im-
plantation and human pregnancy [47]. Prostaglandin G/H
synthase 2 (PTGS2) is related to the regulation of inflam-
matory response, the regulation of which influences the
decidualization response of endometrial stromal cells [48].
Numerous studies have shown that PTGS2 is identified as
important regulators of early pregnancy events and plays a
vital role in human decidualization and vascularization of
the endometrial stroma [49, 50]. In our present study, we
observed lower expressions of STAT3, SRC, and PTGS2 in
decidual cells after AS6 treatment compared with proges-
terone, but the difference was not statistically significant,
suggesting that AS6 may exert progesterone-like effect in the
treatment of RSA.

Similar to PPI analysis, GO enrichment results show
consistent results as demonstrated in Figure 3(b).
Decidualization plays an indispensable role in normal
pregnancy, while suppressed decidualization contributes to
increased prevalence of RSA [51]. Numerous studies have
confirmed that the expressions of key targets including
JUN [52], CASP3 [38], STAT3 [53], SRC [46], and PTGS2
[54] play an essential role in decidualization. In the present
study, we observed that AS6 displayed strong effects on the
expressions of JUN, CASP3, STAT3, SRC, and PTGS2, even
better than the positive control progesterone, indicating
that AS6 may play a strong progesterone-like function to
promote decidualization against RSA. It has been verified
that autophagy makes key functions in RSA-related
pathogenesis, which affects trophoblast invasion and ad-
hesion [55]. Some evidences have illustrated that oxidative
stress is one of the important factors that trigger RSA [56].
According to our present study, AS6 may be an antioxidant
with a good prospect that helps reduce oxidative stress and
improve RSA. Endometrial angiogenesis disorders and
infection exert key functions in RSA, and it has been shown
that AS6 can effectively accelerate the angiogenesis of
regenerated tissues and promote wound healing, and
promote the vascularization of HUVECs [18]. AS6 can also
inhibit the morphological expansion of microglia, reduce
the expression of pro-inflammatory cytokines such as IL-
1B, iNOS, TNF-α, IL-6, IL-1B, and TNF-α in a dose-de-
pendent manner [19].

KEGG enrichment results revealed that PI3K-Akt, HIF-
1, TNF, IL-17, and VEGF signaling pathways may exert
regulatory functions on AS6 against RSA. Some studies
have verified that the inhibition of PI3K-Akt signaling
pathway can reduce trophoblast cell proliferation and
migration [57]. Moreover, studies have shown that acti-
vation of PI3K-Akt signaling pathway could promote en-
dometrial decidualization [58]. However, whether AS6
could regulate PI3K-Akt signaling pathway to treat RSA is

still unclear, which needs further identification in the fu-
ture research. Our present study has shown that AS6 may
treat RSA through the regulation of angiogenesis and tissue
repair as described in Figure 3(b). And some studies have
verified that AS6 can promote the angiogenesis of HUVECs
in vitro by upregulating HIF-1α/VEGF pathway and can
effectively promote the angiogenesis of regenerative tissues
and promote wound healing in vivo [18]. So HIF-1 sig-
naling pathway and VEGF signaling pathway have close
connection with AS6 treatment in RSA. In addition, in-
flammatory response-related pathways including TNF and
IL-17 signaling pathways play vital role in the pathological
process of RSA. Existing study has shown that the balance
between pro-inflammatory cytokines on TNF signaling
pathway exerts important influence on the success or
failure of the implanted embryos [59]. Abnormal expres-
sion of IL-17 in the feto-maternal interface may lead to RSA
[60].

In summary, our results predict some potential thera-
peutic targets and pathways, providing reference for future
studies on AS6 treatment against RSA. However, one lim-
itation of this study is that further in vivo and in vitro ex-
periments are needed to confirm our findings.

5. Conclusion

Collectively, our results revealed that AS6 may treat RSA
possibly by regulating numerous signaling pathways and
targets related with decidualization, autophagy, blood vessel
endothelial cell migration, angiogenesis, inflammatory re-
sponse, oxidative stress, and immune response, etc. More-
over, our in vitro study first reported that AS6 may regulate
the expressions of key targets in decidual cells including
JUN, CASP3, STAT3, SRC, and PTGS2 to promote
decidualization, thus treating RSA.
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